Dual models for possibilistic regression analysis

نویسندگان

  • Peijun Guo
  • Hideo Tanaka
چکیده

Upper and lower regression models (dual possibilistic models) are proposed for data analysis with crisp inputs and interval or fuzzy outputs. Based on the given data, the dual possibilistic models can be derived from upper and lower directions, respectively, where the inclusion relationship between these two models holds. Thus, the inherent uncertainty existing in the given phenomenon can be approximated by the dual models. As a core part of possibilistic regression, firstly possibilistic regression for crisp inputs and interval outputs is considered where the basic dual linear models based on linear programming, dual nonlinear models based on linear programming and dual nonlinear models based on quadratic programming are systematically addressed, and similarities between dual possibilistic regression models and rough sets are analyzed in depth. Then, as a natural extension, dual possibilistic regression models for crisp inputs and fuzzy outputs are addressed. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Possibilistic linear regression analysis for fuzzy data

Fuzzy data given by expert knowledge can be regarded as a possibility distribution by which possibilistic linear systems are defined. Recently, it has become important to deal with fuzzy data in connection with expert knowledge. Three formulations of possibilistic linear regression analysis are proposed here to deal with fuzzy data. Since our formulations can be reduced to linear programming pr...

متن کامل

FUZZY LOGISTIC REGRESSION: A NEW POSSIBILISTIC MODEL AND ITS APPLICATION IN CLINICAL VAGUE STATUS

Logistic regression models are frequently used in clinicalresearch and particularly for modeling disease status and patientsurvival. In practice, clinical studies have several limitationsFor instance, in the study of rare diseases or due ethical considerations, we can only have small sample sizes. In addition, the lack of suitable andadvanced measuring instruments lead to non-precise observatio...

متن کامل

Two- and three-way component models for LR fuzzy data in a possibilistic framework

In this work we address the data reduction problem for fuzzy data. In particular, following a possibilistic approach, several component models for handling twoand three-way fuzzy data sets are introduced. The two-way models are based on classical Principal Component Analysis (PCA), whereas the three-way ones on threeway generalizations of PCA, as Tucker3 and CANDECOMP/PARAFAC. The hereproposed ...

متن کامل

Identification of Possibilistic Linear Systems by Quadratic Membership Functions of Fuzzy Parameters

We have already formalized several models of the possibilistic linear regression analysis, where it is assumed that possibilistic parameters are non-interactive, i.e., the joint possibilistic distribution of parameters is defined by minimum operators. In this paper, we will deal with the interactive case in which quadratic membership functions defined by A. Celmins are considered. With the same...

متن کامل

Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data

In order to estimate fuzzy regression models, possibilistic and least-squares procedures can be considered. By taking into account a least-squares approach, regression models with crisp or fuzzy inputs and crisp or fuzzy output are suggested. In particular, for these fuzzy regression models, unconstrained and constrained (with inequality restrictions) least-squares estimation procedures are dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2006